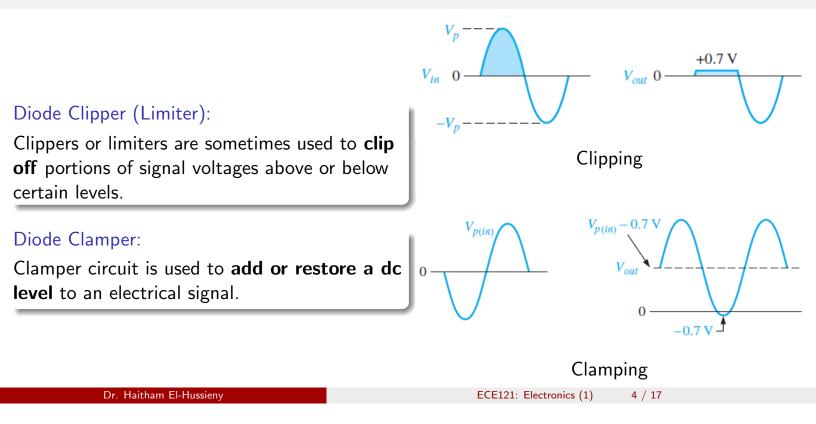

Introduction.

Introduction:

Diode Clipper (Limiter):


Clippers or limiters are sometimes used to **clip off** portions of signal voltages above or below certain levels.

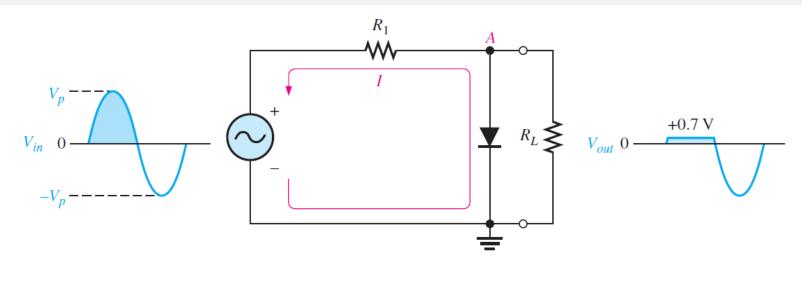
Dr. Haitham El-Hussieny

ECE121: Electronics (1) 4 / 17

Introduction:

Table of Contents

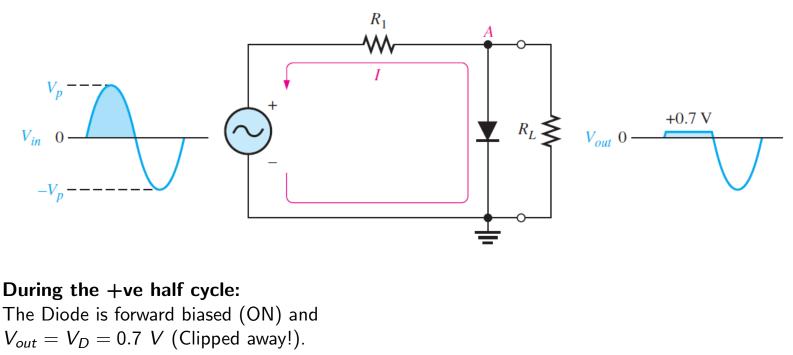
1 Introduction.


2 Diode Clipping Circuits.

3 Diode Clamping Circuits.

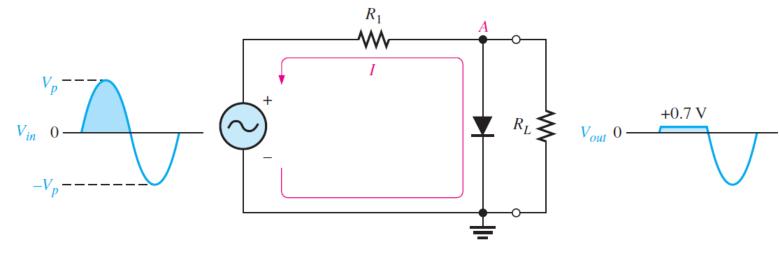
Dr. Haitham El-Hussieny

ECE121: Electronics (1) 5 / 17


Positive Clipping:

Dr. Haitham El-Hussieny

ECE121: Electronics (1) 6 / 17

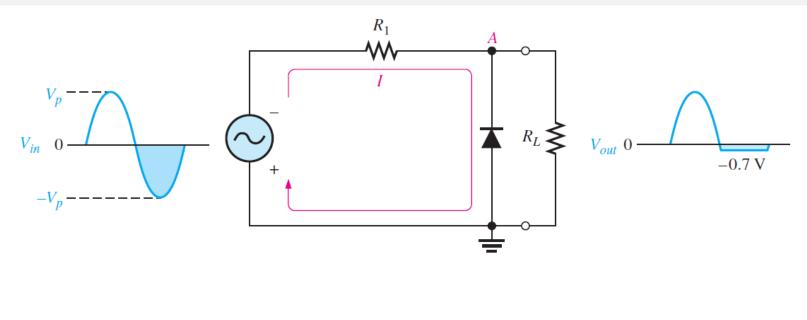

Positive Clipping:

Dr. Haitham El-Hussieny

ECE121: Electronics (1) 6 / 17

Positive Clipping:

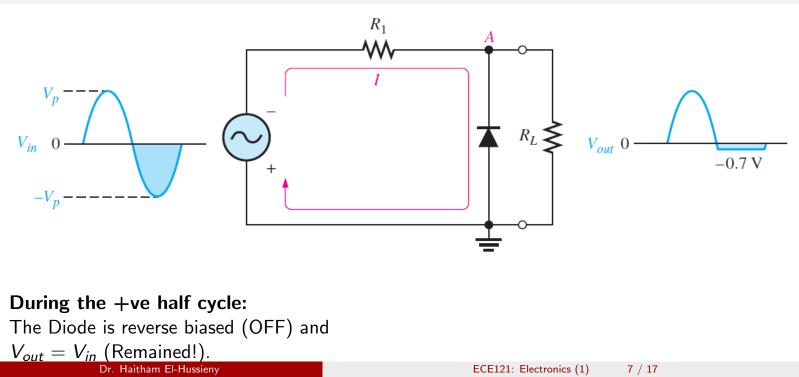
During the +ve half cycle:

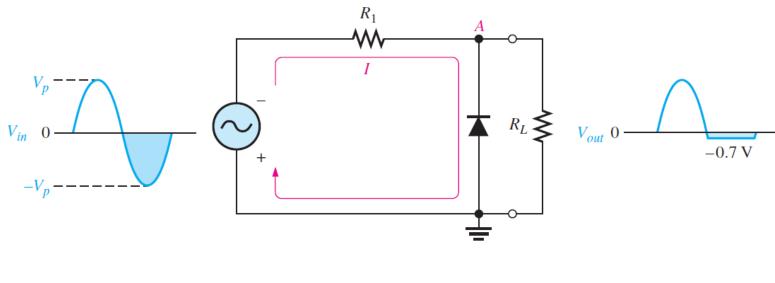

The Diode is forward biased (ON) and $V_{out} = V_D = 0.7 V$ (Clipped away!).

Dr. Haitham El-Hussieny

During the -ve half cycle: The Diode is reverse biased (OFF) and $V_{out} = V_{in}$ (Remained!).

ECE121: Electronics (1) 6 / 17


Negative Clipping:


Dr. Haitham El-Hussieny

ECE121: Electronics (1) 7 / 17

Negative Clipping:

Negative Clipping:

During the +ve half cycle: The Diode is reverse biased (OFF) and $V_{out} = V_{in}$ (Remained!). Dr. Haitham El-Hussieny **During the -ve half cycle:** The Diode is forward biased (ON) and $V_{out} = V_D = 0.7 V$ (Clipped away!). ECE121: Electronics (1) 7 / 17

- both Positive and Negative Clipping, a part of the output voltage looks like the input voltage.
- The output voltage magnitude determined by the voltage divider formed by R_1 and the load resistor, R_L , as follows:

$$V_{out} = \frac{R_L}{R_1 + R_L} V_{in}$$

• If R_1 is small compared to R_L , then $V_{out} \approx V_{in}$.

 R_{1} R_{L} R_{L}

ECE121: Electronics (1) 8 / 17

Dr. Haitham El-Hussieny

Example

What would you expect to see displayed on an oscilloscope connected across R_L in the limiter shown ?

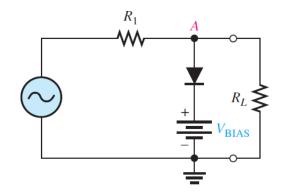
Solution:

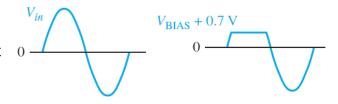
The diode is forward-biased and conducts when the input voltage goes below -0.7V. So, for the negative clipper, the peak output voltage across R_L is:

$$V_{p(out)} = \frac{R_L}{R_1 + R_L} V_{p(in)} = \frac{100}{100 + 10} 10 = 9.09 V$$

Dr. Haitham El-Hussieny

 R_{1} $V_{in} = 0$ $V_{in} = 0$ $V_{out} = 0$


ECE121: Electronics (1) 9 / 17


Diode Clipping Circuits: Biased Clippers:

Biased Positive Clipper:

- The level to which an ac voltage is clipped can be **adjusted** by adding a bias voltage, V_{BIAS} , in series with the diode.
- The voltage at point **A** must equal $V_{BIAS} + 0.7 V$ before the diode will become forward-biased and conduct.
- Once the diode begins to conduct, the voltage at point A is limited to $V_{BIAS} + 0.7 V$ so that all input voltage above this level is **clipped off**.

Dr. Haitham El-Hussieny

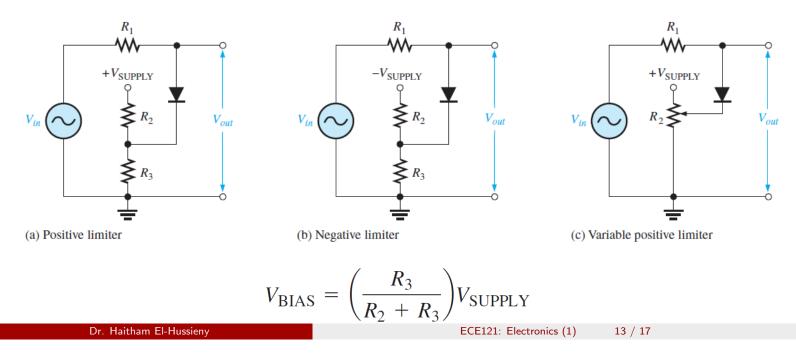
ECE121: Electronics (1) 10 / 17

Biased Clippers:

Biased Negative Clipper:

- To limit a voltage to a specified negative level, the diode and bias voltage must be connected as shown.
- In this case, the voltage at point A must go below $-V_{BIAS} 0.7 V$ to forward-bias the diode and limit the input voltage.

Dr. Haitham El-Hussieny


ECE121: Electronics (1) 11 / 17

Biased Clippers:

 R_1 w $1.0 \ k\Omega$ +10 V Combination of Positive and Negative Clippers: D_1 V_{in} 0 -• When the voltage at point A reaches 5 V+5.7 V, diode D_1 conducts and limits the -10 Vwaveform to +5.7 V. Diodes are 1N914. 2 Diode D2 does not conduct until the voltage reaches -5.7 V. +5.7 V 3 Therefore, positive voltages above +5.7 Vand negative voltages below -5.7 V are V_{out} 0 clipped off. Application: sinusoidal to square-wave -5.7 \ conversion. Dr. Haitham El-Hussieny ECE121: Electronics (1) 12 / 17

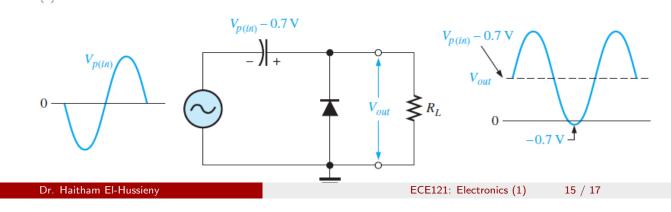
Voltage Divide Biased Clippers:

To change the bias voltage value V_{BIAS} , we can replace it by a resistive voltage divider.

Table of Contents

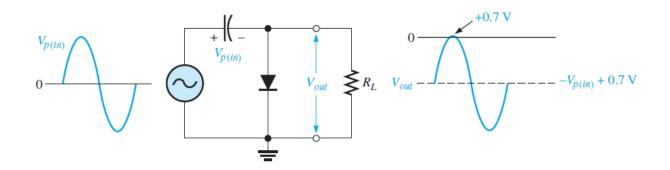
1 Introduction.

2 Diode Clipping Circuits.


3 Diode Clamping Circuits.

Dr. Haitham El-Hussieny

ECE121: Electronics (1) 14 / 17


[1] Positive Clamper:

- A clamper adds a **positive** dc level to an ac voltage.
- **During the -Ve half cycle:** the diode is forward biased, allowing the capacitor to charge to near the peak of the input
- During the +Ve half Cycle: the diode is reverse-biased. The capacitor can only discharge through the resistance of R_L .
- The amount that is discharged capacitor depends on the value of R_L .

[2] Negative Clamper:

• A clamper adds a **negative** dc level to an ac voltage.

Discuss it's operation by your self.

Dr. Haitham El-Hussieny

ECE121: Electronics (1) 16 / 17

Diode Clamping Circuits.

End of Lecture

Best Wishes

haitham.elhussieny@gmail.com

Dr. Haitham El-Hussieny

ECE121: Electronics (1) 17 / 17